On the concept of density control and its application to a hybrid optimization framework: Investigation into cutting problems
نویسندگان
چکیده
The Generate-and-Solve (GS) methodology is a hybrid method that combines a metaheuristic component with an exact solver. GS has been recently introduced in the literature in order to solve cutting and packing problems, showing promising results. The GS framework includes a metaheuristic engine (e.g., a genetic algorithm) that works as a generator of reduced instances of the original optimization problem, which are, in turn, formulated as a mathematical programming problems and solved by an integer programming solver. In this paper, we present an extended version of GS focusing primarily on the concept of a new Density Control Operator (DCO). The role of this operator is to adaptively control the dimension of the reduced instances in such a way as to allow a much steadier progress towards a better solution, thereby avoiding premature convergence. In order to assess the potential of this novel version of the GS methodology, we have conducted computational experiments on a set of difficult benchmark instances of the constrained non-guillotine cutting problem. The results achieved are quantitatively and qualitatively discussed in terms of effectiveness and efficiency, showing that the proposed variant of the GS hybridization framework is highly suitable when effectiveness is a major requirement.
منابع مشابه
Optimization of Minimum Quantity Liquid Parameters in Turning for the Minimization of Cutting Zone Temperature
The use of cutting fluid in manufacturing industries has now become more problematic due to environmental pollution and health related problems of employees. Also the minimization of cutting fluid leads to the saving of lubricant cost and cleaning time of machine, tool and work-piece. The concept of minimum Quantity Lubrication (MQL) has come in to practice since a decade ago in order to overco...
متن کاملA new quadratic deviation of fuzzy random variable and its application to portfolio optimization
The aim of this paper is to propose a convex risk measure in the framework of fuzzy random theory and verify its advantage over the conventional variance approach. For this purpose, this paper defines the quadratic deviation (QD) of fuzzy random variable as the mathematical expectation of QDs of fuzzy variables. As a result, the new risk criterion essentially describes the variation of a fuzzy ...
متن کاملDESIGN AND APPLICATION OF A HYBRID META-HEURISTIC OPTIMIZATION ALGORITHM BASED ON THE COMBINATION OF PSO, GSA, GWO AND CELLULAR AUTOMATION
Presently, the introduction of intelligent models to optimize structural problems has become an important issue in civil engineering and almost all other fields of engineering. Optimization models in artificial intelligence have enabled us to provide powerful and practical solutions to structural optimization problems. In this study, a novel method for optimizing structures as well as solving s...
متن کاملA Numerical Solution of Fractional Optimal Control Problems Using Spectral Method and Hybrid Functions
In this paper, a modern method is presented to solve a class of fractional optimal control problems (FOCPs) indirectly. First, the necessary optimality conditions for the FOCP are obtained in the form of two fractional differential equations (FDEs). Then, the unknown functions are approximated by the hybrid functions, including Bernoulli polynomials and Block-pulse functions based o...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Industrial Engineering
دوره 61 شماره
صفحات -
تاریخ انتشار 2011